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Foundations and the critical point
on the square lattice

2.1 Introduction and main results

In this chapter, we consider the Ising model on finite rectangles in Z2, by which we
mean graphs G = (V,E) whose vertex sets V consist of all points of Z2 contained in
a rectangle [a, b] ⇥ [c, d] in R2, and whose edge sets E consist of all unordered pairs
{u, v} with u, v 2 V such that their L

1

distance ku� vk is 1. For brevity, we will
also write uv instead of {u, v} for the edge between u and v (note that uv = vu). The
boundary @G of G is the set of those vertices u in V for which there is a v 2 Z2 \ V

with ku� vk = 1.
We associate to G a space of spin configurations ⌦G = {�1,+1}V . For � 2 ⌦G ,

�v denotes the spin at v. Sometimes we impose positive boundary conditions, meaning
that we restrict ourselves to the set of configurations

⌦

+

G = {� 2 ⌦G : �u = +1 if u 2 @G}.

In contrast, when we speak of free boundary conditions, we work with the unrestricted
set of spin configurations ⌦free

G = ⌦G .
The Ising model defines a (Gibbs–Boltzmann) probability distribution on the set of

spin configurations. At inverse temperature �, it is given by

P2
G,�(�) =

1

Z2
G,�

Y

uv2E

e��u�v , � 2 ⌦

2
G , (2.1)

where 2 2 {free,+} stands for the imposed boundary condition, and Z2
G,� is the par-

tition function of the model, defined as

Z2
G,� =

X

�2⌦

2
G

Y

uv2E

e��u�v . (2.2)

To simplify the notation, and following the physics literature, we will write

h · i2G,� = E2
G,�( · ) (2.3)

9



10 Chapter 2. Foundations and the critical point on the square lattice

for expectations with respect to P2
G,� . Important functions are the free energy density

f2
G (�) = � 1

�|V | lnZ
2
G,�

and its infinite-volume limit
f(�) = lim

G!Z2
f2
G (�).

It is well known that this limit exists, and also not difficult to show that the limit is
the same for all boundary conditions, see for example [52, Section II.3] (as we shall
see, existence of the limit actually also follows from the signed loop approach for non-
critical �). The formalism of statistical mechanics predicts that phase transitions coin-
cide with discontinuities or other singularities in derivatives of the free energy density.

In the case of the Ising model on Z2, the classical arguments of Peierls [48] and
Fisher [26] (see also [19, 28, 29]) established that it does undergo a phase transition,
which can be characterized in terms of a change in behaviour of the infinite-volume
limits h�u�vi2Z2,� of the two-point functions h�u�vi2G,� . Peierls’ argument implies that
as ku� vk ! 1, these infinite-volume two-point functions stay bounded away from 0
for large enough �. In contrast, Fisher’s argument yields exponential decay to 0 of these
two-point functions as ku� vk ! 1, for sufficiently small �. However, there is a gap
between the two ranges of � for which these arguments work, so they are not strong
enough to conclude that the phase transition is sharp. As we shall see, the signed loop
method studied here does lead to a proof of this fact.

To be more specific, a signed loop is essentially a closed, non-backtracking walk,
with a positive or negative weight assigned to it; see Section 2.1.1 for a precise def-
inition. In this chapter, we demonstrate how the free energy and two-point functions
can be expressed as (infinite) sums over signed loops in Z2, and moreover, how the
rate of convergence of these sums can be controlled. For instance, Theorem 2.3 below
expresses the free energy density f(�) as an explicit formal sum of the weights of all
loops for which the origin is the smallest vertex visited in lexicographic order. Like-
wise, Theorems 2.5 and 2.7 express the two-point functions h�u�vi2Z2,� as infinite sums
over explicitly defined classes of signed loops.

In all cases, we first derive the corresponding loop expressions for finite rectan-
gles G. These were also obtained simultaneously and independently by Helmuth [31]
via the theory of heaps of pieces, but we in addition give explicit bounds on the rates
of convergence to take the infinite-volume limit. As corollaries, without requiring any
external results, we rederive several classical results about the Ising model, which can
be summarized as follows:

Corollary 2.1 (Sharpness of phase transition). The free energy density f(�) is ana-
lytic for all � > 0 except at the self-dual point � = �c given by

exp(�2�c) = tanh�c =

p
2� 1. (2.4)

Moreover, as ku� vk ! 1, h�u�vifree
Z2,� decays to 0 exponentially fast when � 2

(0,�c), while h�u�vi+Z2,� stays bounded away from 0 when � 2 (�c,1).
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This chapter is organized as follows. A precise definition of signed loops and the
formulation of our main results follow in Sections 2.1.1–2.1.4, with our results for the
Ising model in Section 2.1.2, and our key combinatorial identities in Section 2.1.4. The
proofs of these identities are given in Section 2.2, and the proofs of our results about
the Ising model are in Sections 2.4.2, 2.4.3 and 2.4.4.

2.1.1 Signed loops

Although in this chapter our applications are in Z2, it will be necessary to study signed
loops on a more general class of graphs. Our starting point is a (finite or infinite) graph
G = (V,E) embedded in the plane, with vertex set V and edge set E. We identify G
with its embedding. We assume G does not have multiple edges, but we do not assume
that G is planar. For convenience (although this is not strictly necessary), we require
that edges are straight line segments in the embedding, and that except for the vertices
at the two endpoints, no other vertices lie on an edge. As before, we write uv or vu for
the (undirected) edge between u and v.

A walk of n steps in G is a sequence (v
0

, v
1

, . . . , vn�1

) 2 V n such that vivi+1

2
E for i = 0, 1, . . . , n � 2, and vi+2

6= vi for i = 0, 1, . . . , n � 3 (walks are non-
backtracking). If all rotations (i.e. circular shifts) of the sequence (v

0

, . . . , vn�1

) are
also walks (so that in particular, v

0

vn�1

2 E), then we call the walk closed. We
now order the vertices of G lexicographically by their coordinates in the plane, and
define a loop as a closed walk (v

0

, . . . , vn�1

) which is the lexicographically smallest
element in the collection consisting of all rotations of (v

0

, . . . , vn�1

) and all rotations
of the reverse sequence (vn�1

, . . . , v
0

) (note that these are all in a way closed walks
traversing the same loop).

If ` = (v
0

, . . . , vn�1

) is a loop or a closed walk, we shall make the identification
vj ⌘ vj mod n for all j 2 Z. We say that a loop ` is edge-disjoint if vivi+1

6= vjvj+1

for all i, j 2 {0, . . . , n � 1} with i 6= j. If ` is not edge-disjoint, it might be the case
that the sequence (v

0

, . . . , vn�1

) is periodic, in which case we call ` a periodic loop.
The multiplicity of `, denoted by m(`), is its number of steps divided by its smallest
period. In particular, the multiplicity of every nonperiodic loop is 1.

Given two distinct edges uv and vw, we define \(v � u,w � v) 2 (�⇡,⇡) as the
turning angle in the plane from the vector v � u to w � v, see Figure 1.2 (left). The
winding angle ↵(`) of a loop ` = (v

0

, . . . , vn�1

) is simply the sum of all turning angles
along the loop, that is,

↵(`) =

n�1

X

i=0

\(vi+1

� vi, vi+2

� vi+1

). (2.5)

We now define the sign sgn(`) of ` as

sgn(`) = � exp

⇣ i

2

↵(`)
⌘

. (2.6)
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Observe that the winding angle of every loop is a multiple of 2⇡ (here we use the fact
that the edges of G are straight line segments), hence the sign of a loop is either +1

or �1.
To define the signed weight of a loop, we require a vector x = (xuv)uv2E of edge

weights xuv 2 R (or C). Given these edge weights xuv , the signed weight of a loop
` = (v

0

, . . . , vn�1

) in G is defined as

w(`;x) =
sgn(`)

m(`)

n�1

Y

i=0

xvivi+1 . (2.7)

Remark 2.2. If a loop is edge-disjoint, it follows from Whitney’s formula [56] that the
sign of the loop is �1 if and only if the loop crosses itself an odd number of times (see
Figure 1.2). For loops that are not edge-disjoint, it may not be so clear what is meant
by a “crossing”, but definition (2.6) makes sense for both kinds of loop. However, if
one draws loops in such a way that each visit to an edge is drawn slightly apart from a
previous visit, the number of crossings one is forced to draw will always be odd for a
loop of sign �1, and even for a loop of sign +1 (see for instance Figure 2.4 below).

2.1.2 Main results for the Ising model
We now return to the Ising model on Z2. In this section, we will formulate the main
theorems for the Ising model, which express the free energy density and two-point func-
tions in terms of sums over signed loops. Each of our theorems will be accompanied by
a corollary, which taken together, constitute Corollary 2.1. Similar results as the ones
presented here can be obtained for the hexagonal and triangular lattices using the same
methods. In fact, the method applies to the Ising model on even more general (isoradial)
graphs (see Chapter 4), and also allows one to study general multi-point functions (see
Chapter 3).

We start with the free energy density f(�). As we shall prove, f(�) can be ex-
pressed as a sum over those loops in Z2 for which the origin o = (0, 0) is the lexico-
graphicallyically smallest vertex traversed. To be more specific, we define L�

r(Z
2

) as
the collection of all loops ` = (v

0

, . . . , vr�1

) of r steps in Z2 such that v
0

= o. We
take all edges of Z2 to have the same edge weight x. The weights w(`;x) of all loops
` 2 L�

r(Z
2

) are now defined by (2.7), where by slight abuse of notation, we let x denote
both the weight of a single edge, and the vector of all edge weights. Write

f�
r (x) =

X

`2L�
r(Z

2
)

w(`;x).

Theorem 2.3. The free energy density satisfies

��f(�) =

(

ln(2 cosh

2 �) +
P1

r=1

f�
r

�

tanh�
�

if � 2 (0,�c),

2� +

P1
r=1

f�
r

�

exp(�2�)
�

if � 2 (�c,1).
(2.8)
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Note that since f�
r (x) = f�

r (1)x
r,
P

r f
�
r (x) is really a power series in the vari-

able x. The power series expressions (2.8) show directly that the free energy density
is an analytic function of � on (0,�c) [ (�c,1). Thus, in terms of the behaviour of
the free energy density, the Ising model can only be critical at the self-dual point �c.
That f(�) is not analytic at �c follows from Onsager’s formula, which we will obtain
as a corollary to Theorem 2.3:

Corollary 2.4 (Onsager’s formula). For � 2 (0,�c) and for � 2 (�c,1), the free
energy density f(�) is given by the formula

� 1

�

1

8⇡2

Z

2⇡

0

Z

2⇡

0

ln

⇥

4 cosh

2

2� � 4 sinh 2�(cos!
1

+ cos!
2

)

⇤

d!
1

d!
2

.

The functions f and @(�f)/@�, which is the internal energy density of the system,
are both continuous functions of �. However, in [47] Onsager proved that the specific
heat, which is the derivative of the internal energy density with respect to temperature,
diverges as � approaches �c. This shows that �c is indeed critical for the behaviour of
the free energy.

Next, we look at the magnetic behaviour of the model by considering the one-point
and two-point functions above and below �c. We start with the case � 2 (�c,1). What
we will show is that for fixed u, v 2 Z2, the functions h�ui+G,� and h�u�vi+G,� have
infinite-volume limits along rectangles G, where the limits can be identified in terms
of sums over certain classes of loops in Z2⇤, the dual graph of Z2, defined as follows.
Given u, v 2 Z2, let � be a self-avoiding walk in Z2 from u to v (see Figure 2.1, left).
We call a loop in Z2⇤ uv-odd if it crosses � an odd number of times. Similarly, we
call a loop in Z2⇤ u-odd if it crosses a self-avoiding walk � in Z2 from u to 1 an odd
number of times. It is not difficult to see that neither of these definitions depends on
the particular choice of �. We write Lu

r (Z
2⇤
) and Luv

r (Z2⇤
) for the sets of u-odd and

uv-odd loops in Z2⇤ of r steps, respectively.
Let x be the constant vector of edge weights on Z2⇤ equal to exp(�2�) for every

edge, and define the weights of loops in Z2⇤ by (2.7). Set

fu
r (x) =

X

`2Lu
r (Z

2⇤
)

w(`;x); fuv
r (x) =

X

`2Luv
r (Z2⇤

)

w(`;x).

Theorem 2.5. For all � 2 (�c,1) and u, v 2 Z2 (u 6= v),

lim

G!Z2
h�ui+G,� = exp

✓

�2

1
X

r=1

fu
r (x)

◆

=: h�ui+Z2,� > 0;

lim

G!Z2
h�u�vi+G,� = exp

✓

�2

1
X

r=1

fuv
r (x)

◆

=: h�u�vi+Z2,� > 0.

As a corollary to the proof of this theorem, we will obtain that for � 2 (�c,1),
the two-point functions in the infinite-volume limit stay bounded away from 0 when
ku� vk ! 1:
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u

�
v

v

u⇤

v⇤

u

�

Figure 2.1: The walks � (with bold edges), that we use to study the 2-point functions
h�u�vi2G,� . The low-temperature case is on the left (spins are �1 in the gray squares,
+1 in the white regions), the high-temperature case on the right.

Corollary 2.6 (Positive two-point functions above �c). For all � 2 (�c,1),

lim

ku�vk!1
h�u�vi+Z2,� =

⇥h�oi+Z2,�

⇤

2

> 0.

We now turn to the two-point functions for � 2 (0,�c). Fix u, v 2 Z2, and choose
dual vertices u⇤ and v⇤ of Z2⇤ such that ku� u⇤k = kv � v⇤k = 1. This choice is
not unique, but every choice of u⇤ and v⇤ will do. Next, choose a self-avoiding walk �

in Z2⇤ from u⇤ to v⇤ (see Figure 2.1, right). Let V� denote the set of vertices in �, and
let E� denote the union of {uu⇤, vv⇤} with the set of edges traversed by �. Write Z2

�

for the graph obtained from Z2 by adding the vertices and edges from V� and E� to it.
We define Luu⇤

r (Z2

�) as the collection of loops in Z2

� that visit the edge uu⇤ exactly
once and have r � |E� | steps. Note that by definition, if ` 2 Luu⇤

r (Z2

�), r only counts
the number of steps taken by ` along edges of Z2, that is, the steps along the edges
in E� are excluded. As our edge weight vector on Z2

� we take the vector x0
� such that

the weight of every edge in E� is 1, the weight of every edge in Z2 which intersects �
is � tanh�, and the weight of all other edges is tanh�. Set

fuu⇤

r (x0
�) =

X

`2Luu⇤
r (Z2

�)

w(`;x0
�), (2.9)

with w(`;x0
�) defined by (2.7). Let �⇤ denote the inverse temperature which is dual

to �, i.e. such that exp(�2�⇤
) = tanh�.

Theorem 2.7. For all � 2 (0,�c) and u, v 2 Z2 (u 6= v),

lim

G!Z2
h�u�vifree

G,� =

✓ 1
X

r=1

fuu⇤

r (x0
�)

◆

h�u⇤�v⇤i+Z2⇤,�⇤ =: h�u�vifree
Z2,� .

The term h�u⇤�v⇤i+Z2⇤,�⇤ appearing here is the infinite-volume limit of a two-point
function for an Ising model on the dual square lattice Z2⇤ at the dual inverse tempera-
ture �⇤ with positive boundary conditions. It can be expressed in terms of signed loops
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by means of Theorem 2.5. As an aside, we note that the result in Theorem 2.7 simplifies
when u and v are on the same face of Z2 (i.e. ku� vk = 1), since then we can take
u⇤

= v⇤, so that �u⇤�v⇤
= 1. Moreover, since the walk � is void in this case, none of

the edge weights will be equal to � tanh�.
As a corollary to Theorem 2.7 we will obtain that the two-point functions decay

exponentially to 0 with the distance ku� vk for � 2 (0,�c), which together with
Corollaries 2.4 and 2.6 implies Corollary 2.1:

Corollary 2.8 (Decaying two-point functions below �c). For all � 2 (0,�c) and all
u, v 2 Z2, we have that

0  h�u�vifree
Z2,�  16

X

r�ku�vk

⇣

tanh�

tanh�c

⌘r

.

Note that Corollaries 2.6 and 2.8 show contrasting behaviour of the two-point func-
tions above and below �c: at low temperatures they stay bounded away from 0, while
for high temperatures they decay to 0. However, we have used different boundary con-
ditions above and below the critical point. In Chapter 3, we will remove this asymmetry
from our results and we will complete the picture of the phase transition of the Ising
model on the square lattice.

2.1.3 Additional edges and loop length
The set of edges E� that we introduced above to formulate our Theorem 2.7 is an
example of what we call additional edges. As this example shows, we occasionally
need these additional edges in our applications. They act as “shortcuts” that our loops
can follow, and in general, just as we did above, we do not want to count the steps taken
by our loops along these shortcuts.

Another example of the use of additional edges is in our proofs leading to Corol-
lary 2.4, in which we compare loops in Z2 with loops on a torus. Here we face a
problem, because our methods and theorems about signed loops (to be presented be-
low) require that the graph we work on is embedded in the plane. As a solution, we will
not work on the torus directly, but on a representation of it in the plane. As our repre-
sentation, we take a rectangle in Z2 with opposite sides connected by additional edges,
as illustrated in Figure 2.2. In this example, the additional edges do not correspond to
edges that can be traversed by a loop on the torus, and this is the reason why steps taken
along the additional edges again should not be counted.

In general, these considerations lead us to allow the edge set E of the graph G =

(V,E) we work on to be divided into a set EA of additional edges and a set E \ EA of
edges that we call representative. For reasons that will become clear, we must impose
that the set EA is such that the graph (V,EA) is free of cycles, but otherwise, the edge
set can in principle be any subset of edges. We now define the length r(`) of a loop
` = (v

0

, . . . , vn�1

) as the number of i in {0, . . . , n � 1} such that vivi+1

2 E \ EA.
Note the distinction between the length of a loop and its number of steps.
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Figure 2.2: A square lattice wrapped around a torus (right) and a representation of it
in the plane (left). The gray square corresponds to the torus, the dotted lines and open
circles are the additional edges and vertices.

2.1.4 The combinatorial identities
We next formulate our combinatorial identities about signed loops for a fixed finite
graph G = (V,E) embedded in the plane, satisfying the same assumptions as in Sec-
tion 2.1.1. In particular, recall that edges are straight line segments, and that we do not
assume G is planar, which implies that two edges can intersect in a point which is not a
vertex. In this case, we say that the two edges cross each other.

We call a subset F of E even if every vertex in the subgraph (V, F ) of G has even
degree (the empty set is also even). By C(F ) we denote the total number of unordered
pairs of edges in F that cross each other. Given a vector x = (xuv)uv2E of edge
weights on G, we now define the generating function Z(x) of even subgraphs of G as

Z(x) =
X

even F⇢E

(�1)

C(F )

Y

e2F

xe. (2.10)

If the graph G is planar, we can embed it in such a way that no edges cross each other,
so that C(F ) = 0 for all F , but in general, an even F ⇢ E may give a negative con-
tribution to the right-hand side of (2.10). This makes our generating function different
from the one usually studied in the literature. Note as a consequence that different em-
beddings of the same (abstract) graph can lead to different functions Z(x). Since we
identify G with its embedding, this last fact does not concern us here.

Our combinatorial identities express the generating function Z(x) in terms of sums
over the signed loops in G, with their weights defined by (2.7). This is what allows us to
study the Ising model in terms of signed loops, since the free energy and the two-point
functions of the Ising model can be expressed in terms of graph generating functions,
as we shall see.

Theorem 2.9. Let � be the maximum degree of the graph G. If |xe| < (� � 1)

�1 for
all e 2 E, then

Z(x) = exp

✓

X

` in G
w(`;x)

◆

. (2.11)
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We will show that under the condition of Theorem 2.9, the loop weights are abso-
lutely summable, so that the order of summation does not matter. In particular, let Lr

be the collection of all loops of length r in G, and let

fr(x) =
X

`2Lr

w(`;x). (2.12)

Then Theorem 2.9 implies that Z(x) equals exp

�

P

r fr(x)
�

, but we claim that this
latter equality already holds under a significantly weaker condition.

This condition can be formulated in terms of the transition matrix ⇤(x), which we
now introduce. If uv is an edge of G, then by �!uv we will denote the directed edge
from u to v. The matrix ⇤(x) will be indexed by the directed representative edges of G.
Given two directed representative edges �!uv and �!wz, we say that v is linked to w if either
v = w, or there exists a sequence of distinct additional edges v

1

v
2

, v
2

v
3

, . . . , vn�1

vn
such that v = v

1

and vn = w. In the former case, if v = w and u 6= z, we write

\(�!uv,�!wz) = \(v � u, z � w)

for the turning angle from �!uv to �!wz. In the latter case, the sequence (v
1

, . . . , vn) is a
walk (the chain) linking v to w, passing through additional edges only, and we say that
“v ; w via (v

1

, . . . , vn)”. By our assumption that the additional edges form no cycles,
there can be at most one such walk. Hence, without ambiguity, if v is linked to w in this
way, we can define

\(�!uv,�!wz) = \(v � u, v
2

� v)

+

n�2

X

i=1

\(vi+1

� vi, vi+2

� vi+1

) + \(w � vn�1

, z � w).

The transition matrix ⇤(x) is now defined as follows. Write ⇤�!uv,�!wz(x) for the entry
of the matrix with row index �!uv and column index �!wz. Then

⇤

�!uv,�!wz(x) =

8

>

>

>

<

>

>

>

:

xuve
i\(

�!uv,�!wz)/2 if v = w and u 6= z;

xuv

n�1

Q

i=1

xvivi+1e
i\(

�!uv,�!wz)/2 if v ; w via (v
1

, . . . , vn);

0 otherwise.

(2.13)

Let �i(x), i = 1, 2, . . . , 2|E \ EA|, denote the eigenvalues of ⇤(x), and let ⇢(x) =

maxi|�i(x)| be its spectral radius. We will show that if ⇢(x) < 1, then the fr(x) are
absolutely summable. This leads to our second identity, which forms the core of the
signed loop approach:

Theorem 2.10. If ⇢(x) < 1, then

Z(x) = exp

✓ 1
X

r=1

fr(x)

◆

= det

1
2
�

I� ⇤(x)
�

. (2.14)
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Clearly, to apply Theorem 2.10 to the Ising model on Z2, we will need a bound on
the spectral radius ⇢(x). Since ⇢(x) is bounded from above by the operator norm k⇤(x)k
of ⇤(x) induced by the Euclidean norm, the desired bound is provided by the next the-
orem:

Theorem 2.11. For a finite rectangle G in Z2 with no additional edges,

k⇤(x)k  (

p
2 + 1)kxk1,

and |fr(x)|  2|V |r�1

(

p
2 + 1)

rkxkr1.

If we take all edge weights to be 1, Theorem 2.11 says that the “number” of signed
loops of n steps, counted with signs and multiplicities included, grows (in absolute
value) like (

p
2 + 1)

n. Contrast this with the number of unsigned non-backtracking
loops in Z2, which grows like 3

n. It is this reduction in growth rate which allows us to
go all the way to the critical point, while the classical Peierls and Fisher arguments stay
far from it. Indeed, in Section 2.1.2 we have seen that we will take our edge weights to
be either exp(�2�) or tanh�, so by Theorem 2.11 and since exp(�2�c) = tanh�c =

(

p
2 + 1)

�1 (2.4), the spectral radius will be smaller than 1 for all � 2 (�c,1) or all
� 2 (0,�c), respectively.

We conclude this introduction with a few remarks about the history and status of
the combinatorial identities presented above. As already mentioned in the introduc-
tion, Kac and Ward observed in their paper [36] that the Onsager–Kaufman formula
for the partition function ZG,� of the Ising model on Z2 appears to be proportional to
the square root of the determinant of a matrix, which for rectangles in Z2 is equivalent
to our matrix I � ⇤(x). Various attempts were subsequently undertaken to justify the
formula Z2

G,� / detTG , and to rederive the Onsager–Kaufman formula in this way.
These attempts involved expanding the partition function into a formal infinite product
over signed loops [11, 50, 51], or a formal infinite sum over signed loop configura-
tions [55]. In either case, the correct interpretation and convergence of the obtained
formal expressions are serious mathematical issues.

These issues were circumvented by Dolbilin et al. [21] by directly comparing the
coefficients of the finite polynomials Z2

G,� and detTG , thus rigorously proving the for-
mula Z2

G,� / detTG for finite planar graphs G. The same method was then employed
by Cimasoni to generalize this Kac–Ward formula to graphs embedded in surfaces of
higher genus [15]. He also exposed a direct relation between the Kac–Ward determinant
and the adjacency matrix arising in the dimer approach.

Historically then, the main focus appears to have been on the equality between
the extreme left-hand and right-hand sides of equation (2.14), in cases where Z(x) is
proportional to the Ising partition function and TG = I � ⇤(x). For the applications
to the Ising model presented in this paper, however, the first equality in (2.14) is the
more important and relevant one. Therefore, our proof proceeds along the lines of
the Vdovichenko paper, which is targeted at directly expressing Z(x) as an infinite
sum over configurations of signed loops. As we go along, we carefully address the
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issues of interpretation and convergence of this sum, mentioned above. In particular,
Theorem 2.11, the key to the convergence issue, is to the best of our knowledge a new
result.

Moreover, for our applications of the combinatorial results to the Ising model, it
turns out to be necessary to allow crossing edges. This means that our function Z(x)

(and hence also Theorem 2.10) is not quite the same as the one considered in the lit-
erature so far. In particular, our Z(x) need not be proportional to the Ising partition
function for the graph G.

2.2 Proofs of the combinatorial identities

We now turn to the proof of our main Theorems 2.9 and 2.10. Recall that here G =

(V,E) is a general finite graph embedded in the plane, potentially containing crossing
edges or additional edges. The proof proceeds in a number of steps. In the first step,
detailed in Section 2.2.1, we will identify each even subgraph (V, F ) of G with a number
of edge-disjoint collections of loops, and show that the sum of their weights yields
precisely the contribution of F to the generating function Z(x). In the second step,
in Section 2.2.2, we will explain the conditions under which we can express Z(x) in
terms of

P

r fr(x) and det

�

I � ⇤(x)
�

, under the assumption that the weights of all
remaining configurations of loops in G of total length r cancel each other. The proof of
this assumption, the last step, is carried out in Section 2.2.3.

2.2.1 Expansion into collections of edge-disjoint loops

We will be concerned with crossings of loops and walks, and we need to carefully
establish the relevant definitions first. More specifically, we will consider collections
{`

1

, . . . , `s} of loops with the properties that all loops `
1

, . . . , `s are edge-disjoint, and
no two loops in the collection visit a common edge. We call these edge-disjoint collec-
tions of loops. Intuitively it may be clear what we mean by a crossing of such edge-
disjoint loops, but some care is needed, so we will now give the precise definitions.

First, consider two walks (u, v, w) and (x, y, z) in G, and let A be the union of the
two half-lines {v+ t(u� v) : t � 0} and {v+ t(w� v) : t � 0}. We say that (u, v, w)
and (x, y, z) cross each other at the vertex v if v = y and the vertices x and z do not lie
in the same infinite component of the complement of A in the plane.

Now let `
1

= (u
0

, . . . , un�1

) and `
2

= (v
0

, . . . , vm�1

) be two loops that form an
edge-disjoint pair {`

1

, `
2

}. By CV (`1, `2) we denote the number of pairs (i, j), where
0  i < n and 0  j < m, such that the walks (ui�1

, ui, ui+1

) and (vj�1

, vj , vj+1

)

cross each other at ui. We call CV (`1, `2) the number of vertex crossings between `
1

and `
2

. Similarly, we define the number of edge crossings between `
1

and `
2

, denoted
CE(`1, `2), as the number of pairs (i, j) such that 0  i < n and 0  j < m, and the
edges uiui+1

and vjvj+1

cross each other in G.
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We also need to formally define the number of times a loop crosses itself, so con-
sider an edge-disjoint loop ` = (v

0

, . . . , vn�1

). We define the number of vertex self-
crossings of `, denoted CV (`), as the number of pairs (i, j), where 0  i < j < n, such
that (vi�1

, vi, vi+1

) and (vj�1

, vj , vj+1

) cross each other at the vertex vi. The number
of edge self-crossings of `, denoted CE(`), is defined as the number of pairs (i, j) such
that 0  i < j < n, and the edges vivi+1

and vjvj+1

cross each other in the graph G.
As was already mentioned in the introduction, Whitney’s formula [56] says that the

sign of an edge-disjoint loop is �1 if the loop crosses itself an odd number of times,
and +1 otherwise. In other words, we have

sgn(`) = (�1)

CV (`)+CE(`)

if ` is edge-disjoint. We now simply define the sign of an edge-disjoint collection of
loops {`

1

, . . . , `s} as

sgn{`
1

, . . . , `s} =

s
Y

i=1

sgn(`i) = (�1)

Ps
i=1{CV (`i)+CE(`i)}. (2.15)

If F ⇢ E is even, we can decompose F into an edge-disjoint collection of loops in such
a way, that the union of all edges traversed by the loops is F (one way to find such a
decomposition is given in the proof of Proposition 2.12 below). This decomposition is
in general not unique. We write D(F ) for the set of all possible edge-disjoint decompo-
sitions of F , and recall that C(F ) denotes the number of unordered pairs of edges in F

that cross each other.

Proposition 2.12. For all even subsets F of E we have that
X

{`1,...,`s}2D(F )

sgn{`
1

, . . . , `s} = (�1)

C(F ).

Proof. Let {`
1

, . . . , `s} be an edge-disjoint collection of loops. Since `
1

, . . . , `s are all
closed loops in the plane, any two distinct loops `i and `j from the collection necessarily
cross each other an even number of times. That is, CV (`i, `j) + CE(`i, `j) is even for
all i 6= j. Therefore,

sgn{`
1

, . . . , `s} = (�1)

P
1is{CV (`i)+CE(`i)}+

P
1i<js{CV (`i,`j)+CE(`i,`j)}.

Furthermore, if {`
1

, . . . , `s} 2 D(F ), then clearly the total number of edge crossings
occurring among the loops must coincide with C(F ), that is,

C(F ) =

X

1is

CE(`i) +
X

1i<js

CE(`i, `j).

Hence, it suffices to prove that
X

{`1,...,`s}2D(F )

(�1)

P
1is CV (`i)+

P
1i<js CV (`i,`j)

= 1. (2.16)
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Figure 2.3: The neighbours v
1

, v
2

, . . . of a vertex v in an even subgraph (V, F ) are
ordered in a clockwise fashion around v. Two neighbours that are connected by edges
drawn in the same line style are paired to each other (see the text).

Let VF denote the set of vertices in V whose degree in the subgraph (V, F ) is
nonzero, and let deg(v, F ) denote the degree of v in (V, F ). For v 2 VF of degree 2k,
write v

1

, . . . , v
2k for the endpoints of the edges in F that are incident to v. Assume

that these vertices are ordered in a clockwise manner around v, starting from the lexico-
graphically smallest one (see Figure 2.3). Denote by Pv(F ) the collection of partitions
of the vertices v

1

, . . . , v
2k into sets of size 2. We call these partitions pairings at the

vertex v. We write
P(F ) =

Y

v2VF

Pv(F ),

and call an element of P(F ) a pairing associated with the subgraph (V, F ).
We have a natural 1–1 correspondence between P(F ) and D(F ). Indeed, starting

from any vertex v 2 VF and any i 2 {1, . . . , deg(v, F )}, the pairing ⇡ 2 P(F ) defines
a unique closed walk (u

0

, . . . , un�1

) with the properties that u
0

= vi, u1

= v, and
for all j, uj�1

is paired with uj+1

at the vertex uj . Continuing this way, and replacing
each closed walk obtained by the corresponding loop, yields an edge-disjoint collection
{`

1

, . . . , `s} 2 D(F ). It is easy to see that this defines a bijective relation between
P(F ) and D(F ).

Using this bijection, we can express the sum in (2.16) equally well as a sum over all
pairings. More precisely, for ⇡ 2 P(F ) let ⇡v denote the pairing it induces at the vertex
v 2 VF , and write Cv(⇡v) for the number of crossings at the vertex v introduced by this
pairing. We call ⇡v even (odd) if Cv(⇡v) is even (odd). Note that (2.16) is equivalent to

X

⇡2P(F )

(�1)

P
v2VF

Cv(⇡v)
=

Y

v2VF

X

⇡v2Pv(F )

(�1)

Cv(⇡v)
= 1,

from which we see that it suffices to prove that for all v 2 VF , the number of even
pairings ⇡v exceeds the number of odd pairings ⇡v by 1.

We prove this by induction on the degree 2k of v. Write N+

k and N�
k for the

numbers of even, resp. odd, pairings for v of degree 2k. For k = 1, we clearly have
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N+

k = 1 and N�
k = 0. Now let k > 1, and suppose that we pair the vertex v

1

with vi
at v. Next pair the remaining 2k�2 neighbours vj of v in all possible ways. For even i,
there is an even number of j in between 1 and i, and therefore the pairing we obtain
will be even if and only if the pairing of the remaining 2k � 2 vertices is even (see
Figure 2.3). Likewise, for odd i, the obtained pairing will be even if and only if the
pairing of the remaining vertices is odd. Since we have k even values for i, and k � 1

odd values, this gives N+

k = kN+

k�1

+(k�1)N�
k�1

and N�
k = kN�

k�1

+(k�1)N+

k�1

.
Hence by the induction hypothesis, N+

k �N�
k = 1.

From Proposition 2.12 we will now obtain the first main result. Recall that

Z(x) =
X

even F⇢E

(�1)

C(F )

Y

e2F

xe.

The case F = ; is treated separately: by convention it contributes 1 to the sum. Hence,
Proposition 2.12 implies that

Z(x) = 1 +

X

even F⇢E:

F 6=;

X

{`1,...,`s}2D(F )

sgn{`
1

, . . . , `s}
Y

e2F

xe.

Recall that the multiplicity m(`) of an edge-disjoint loop ` is 1. Therefore, using (2.15)
and the definition (2.7) of the weight of a loop, we can write

Z(x) = 1 +

X

even F⇢E:

F 6=;

X

{`1,...,`s}2D(F )

s
Y

i=1

w(`i;x).

Since this is a finite sum, we do not need to worry about the order of summation, so we
have

Z(x) = 1 +

1
X

r=1

X

even F⇢E:

|F\EA|=r

X

{`1,...,`s}2D(F )

s
Y

i=1

w(`i;x).

If we now denote by Dr the set consisting of all those edge-disjoint collections of loops
{`

1

, . . . , `s} for which the total length
Ps

i=1

r(`i) is r, we see that we have established
the following theorem:

Theorem 2.13.

Z(x) = 1 +

1
X

r=1

X

{`1,...,`s}2Dr

s
Y

i=1

w(`i;x).

2.2.2 Extension to all loop configurations
In Theorem 2.13, we have expressed the generating function Z(x) as a sum over all
edge-disjoint collections of loops in G. In this section, we will see that if the edge
weights are sufficiently small, we can drop the condition that the loops have to be
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edge-disjoint, and sum instead over all possible loop configurations in G. Here, a loop
configuration is simply an ordered sequence (`

1

, . . . , `s) of loops; there is no condition
that loops have to be edge-disjoint, nor that two loops in the configuration have to be
distinct (i.e. it is allowed that `i = `j for some i 6= j, which is why we work with
ordered sequences of loops now).

Write Cr for the collection of all loop configurations (`
1

, . . . , `s) satisfying r(`
1

) +

· · · + r(`s) = r. Some of these loop configurations will consist of distinct loops that
together form an edge-disjoint collection of loops. Let C⇤

r denote the subset of Cr
containing only these edge-disjoint loop configurations. Observe that if {`

1

, . . . , `s}
is an edge-disjoint collection of loops, then there are s! corresponding (ordered) loop
configurations (`

1

, . . . , `s). Therefore, by Theorem 2.13 we already have that

Z(x) = 1 +

1
X

r=1

1
X

s=1

X

(`1,...,`s)2C⇤
r

1

s!

s
Y

i=1

w(`i;x),

but we claim that here we may sum over Cr instead of C⇤
r :

Theorem 2.14.

Z(x) = 1 +

1
X

r=1

1
X

s=1

X

(`1,...,`s)2Cr

1

s!

s
Y

i=1

w(`i;x).

Clearly, since Cr is a finite set for every fixed r, this result is an immediate conse-
quence of the following proposition:

Proposition 2.15. For all r > 0,
1
X

s=1

X

(`1,...,`s)2Cr\C⇤
r

1

s!

s
Y

i=1

w(`i;x) = 0.

The proof of Proposition 2.15 is involved, and we postpone it to Section 2.2.3. For
now, we assume that Proposition 2.15 and hence Theorem 2.14 hold, and explain how
Theorems 2.9 and 2.10 follow from this.

Proof of Theorem 2.9. By splitting the sum over the set of loop configurations Cr in
Theorem 2.14 according to the lengths of the individual loops, and using (2.12), we can
write

Z(x) = 1 +

1
X

r=1

1
X

s=1

1

s!

X

r1+···+rs=r

s
Y

i=1

✓

X

`2Lri

w(`;x)

◆

= 1 +

1
X

r=1

1
X

s=1

1

s!

X

r1+···+rs=r

s
Y

i=1

fri(x). (2.17)

Now suppose that, given x, there exist ⇢ 2 (0, 1) and C < 1 such that

|fr(x)|  C⇢r for all r. (2.18)
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For future reference, we note that this condition is implied by the stronger condition
that

X

`2Lr

|w(`;x)|  C⇢r for all r. (2.19)

Under condition (2.18), if we write h(r, s) for the summand in (2.17), we have

|h(r, s)| =
�

�

�

�

1

s!

X

r1+···+rs=r

s
Y

i=1

fri(x)

�

�

�

�

 Cs

s!

✓

r � 1

s� 1

◆

⇢r,

and thus
1
X

s=1

1
X

r=1

|h(r, s)| 
1
X

s=1

Cs

s!

1
X

r=s

✓

r � 1

s� 1

◆

⇢r = exp

✓

C⇢

1� ⇢

◆

� 1.

Hence, we can apply Fubini’s theorem to interchange the order of summation over r
and s in (2.17), which yields

Z(x) = 1 +

1
X

s=1

1

s!

1
X

r=1

X

r1+···+rs=r

s
Y

i=1

fri(x).

Note that under condition (2.18),
P

r fr(x) is absolutely convergent. We now apply
Mertens’ theorem, which says that if a series

P

r ar converges absolutely, and the se-
ries

P

r br converges, then their Cauchy product converges to (

P

r ar)(
P

r br). In
particular, by induction, the s-fold Cauchy product of the series

P

r ar with itself,
which is

P

r

P

r1+···+rs=r ar1ar2 · · · ars , converges to (

P

r ar)
s. Applying this with

ar = fr(x), we obtain

Z(x) = 1 +

1
X

s=1

1

s!

✓ 1
X

r=1

fr(x)

◆s

= exp

✓ 1
X

r=1

fr(x)

◆

. (2.20)

Observe that this result holds already under the weaker of the two conditions (2.18)
and (2.19), but that under the stronger condition (2.19), the loop weights can in fact
be summed in any order. We will now show that the condition of Theorem 2.9 im-
plies (2.19). Indeed, under the condition of Theorem 2.9, there exists ⇢ 2 (0, 1) such
that (��1)|xe|  ⇢ for all edges e 2 E. Observing that if a loop takes a step, then there
are at most � � 1 possibilities for the next step, this implies that the sum of |w(`;x)|
over all loops ` of n steps is bounded by |V |⇢n. Since a loop of length r takes at least r
steps, summing over n � r yields (2.19).

Proof of Theorem 2.10. Recall definition (2.13) of the entries of ⇤(x), which are in-
dexed by the directed representative edges of G. We can interpret this matrix as a tran-
sition matrix for non-backtracking walks on the graph G0 which is represented by G.
This represented graph G0 can be obtained from G by removing every chain of addi-
tional edges from G, and identifying the two vertices at the ends of this chain (see
Figure 2.2 for an example).
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Indeed, consider two directed representative edges �!uv and �!wz 6= �!vu in G, and
write �!uv0 and �!wz0 for the corresponding directed edges in the represented graph G0. By
construction, a non-backtracking walk in G0 can make a step from �!uv0 to �!wz0 if and only
if v is linked to w in the graph G, since only then will v be identified with w in G0. This
step corresponds to either a direct step from �!uv to �!wz in G (if v = w), or to a sequence
of steps along the chain linking v to w. In either case, the matrix entry ⇤

�!uv,�!wz(x) picks
up all edge weights and turning angles associated with these steps in G.

We can interpret this entry as describing the weight picked up by a non-backtracking
walk in G0 when it steps from �!uv0 to �!wz0. Viewed in this way, the entry of the ma-
trix ⇤

r
(x) indexed by �!uv and �!wz is equal to the sum of the weights of all non-backtrack-

ing walks in G0 of r steps starting from �!uv0 and ending on �!wz0. In particular, the sum of
the diagonal entries of ⇤r

(x) is equal to the sum of the weights of all non-backtracking
walks in G0 of r steps starting and ending on the same directed edge.

Now consider a loop ` of length r in G. Note that it is possible to start traversing
this loop from each step it takes along a representative edge in two directions. Mapping
the walks thus obtained to the represented graph G0 yields precisely 2r/m(`) different
non-backtracking walks of r steps in G0 that start and end on the same directed edge.
By (2.7), (2.6) and (2.12), it now follows that

tr⇤

r
(x) = �2rfr(x),

where the minus sign comes from the minus sign in the definition (2.6) of the sign of
a loop in terms of its winding angle. Expressed in the eigenvalues �i(x) of ⇤(x), we
therefore have that

fr(x) = � 1

2r

X

i

�r
i (x). (2.21)

In particular, condition (2.18) is satisfied if ⇢(x) = maxi|�i(x)| < 1, so in this case
the same argument as in the proof of Theorem 2.9 yields (2.20). Moreover, if ⇢(x) < 1,
then using (2.21) we can write

Z(x) = exp

✓

�1

2

1
X

r=1

X

i

�r
i (x)

r

◆

= exp

✓

�1

2

X

i

1
X

r=1

�r
i (x)

r

◆

,

and since
P1

r=1

ur/r = � ln(1� u) if |u| < 1, we conclude that

Z(x) =
Y

i

�

1� �i(x)
�

1/2
= det

1
2
�

I� ⇤(x)
�

.

2.2.3 Cancellation of non-edge-disjoint loop configurations
We now turn to the missing step in the proofs of Theorems 2.9 and 2.10, which is the
proof of Proposition 2.15. That is, we must show that the weights of all loop configu-
rations (`

1

, . . . , `s) which are not edge-disjoint and satisfy r(`
1

) + · · ·+ r(`s) = r for
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Figure 2.4: Four loop configurations on the same vertices and edges, where the traver-
sals of the same edge have been drawn slightly apart to make them discernible. The
factors 1

s!

Qs
i=1

sgn(`i)/m(`i) are spelled out below each loop configuration to show
that the sum of their signed weights is 0.

a given r, cancel each other. What complicates matters here is the fact that these loop
configurations do not cancel each other one by one, see for example Figure 2.4.1 Our
strategy of the proof is to map loop configurations to so-called labelled loop configura-
tions, which do cancel each other one by one, and show that this implies cancellation
of the unlabelled loop configurations for combinatorial reasons.

We will therefore start by introducing the notion of a labelled loop, and work our
way from there towards the notion of a labelled loop configuration, and the proof of
their cancellation. In words, a labelled loop is a loop with a label attached to each step
it takes, where the labels are distinct positive integers. For periodic loops, the first step
is repeated after completing a period, and we require that the label of the first step of
the loop is smaller than the label associated with each of these repetitions.

Formally, a labelled loop `} is a sequence (v
0

, a
0

, v
1

, a
1

, . . . , vn�1

, an�1

) satisfy-
ing the following conditions:

L1 ` = (v
0

, . . . , vn�1

) is a loop;

L2 (a
0

, a
1

, . . . , an�1

) is a sequence of distinct positive integers, called the labelling
of the loop;

L3 if ` is periodic, i.e. m(`) > 1, then a
0

is smaller than akn/m(`) for all
k 2 {1, 2, . . . ,m(`)� 1}.

We call the number ai the label on step i + 1 of the loop `; we also regard it as a
label assigned to the edge vivi+1

. We will use the superscript } for labelled loops, and
the unlabelled loop corresponding to a labelled loop will consistently be denoted by
dropping this superscript: if `} is a labelled loop, then ` is the corresponding unlabelled
loop, and so on.

Observe that one of the effects of labelling loops is that it breaks the periodicity of
periodic loops: sequences representing labelled loops cannot be periodic. Therefore,

1A picture of the same configurations appears in [20] to point out the error in Vdovichenko’s paper; it is
crucial here to take the multiplicities of the loops into account.
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if ` is periodic, we do not assign to the labelled loop `} = (v
0

, a
0

, . . . , vn�1

, an�1

) the
same weight as to its unlabelled counterpart. Instead, we define the weights of labelled
loops in general by

w(`};x) = sgn(`)

n�1

Y

i=0

xvivi+1 , (2.22)

where the sign is defined in terms of the winding angle of ` by (2.6), as before. Note
that this weight is actually independent of the particular labelling of the loop, and that
w(`};x) = m(`)w(`;x).

We write n(`) for the number of steps of a loop ` (recall that this is not necessarily
the same as the length r(`) of the loop). By a labelled loop configuration we mean a
collection {`}

1

, . . . , `}s } of labelled loops, in which all labels are distinct and take values
from the set

�

1, 2, . . . ,
Ps

i=1

n(`i)
 

. In particular, any loop configuration (`
1

, . . . , `s)

can be turned into a labelled loop configuration by attaching a label to every step of
every loop in such a way that condition L3 above is fulfilled for every labelled loop
obtained, and all labels 1, 2, . . . ,

Ps
i=1

n(`i) are used.
Now fix r and n, and consider a loop configuration (`

1

, . . . , `s) which is not edge-
disjoint and satisfies

Ps
i=1

r(`i) = r and
Ps

i=1

n(`i) = n. Let t denote the number
of distinct loops in (`

1

, . . . , `s), and write k
1

, . . . , kt for the respective number of times
each of them occurs, so that k

1

+ · · · + kt = s. Consider the collection of all labelled
loop configurations {`}

1

, . . . , `}s } that can be obtained from (`
1

, . . . , `s) by labelling
the loops, as described above. For a periodic loop `i, only one of the rotations of its
labelling, rotated over a multiple of the smallest period, satisfies condition L3. Further-
more, interchanging the labellings of two identical loops `i and `j (`i = `j but i 6= j)
yields the same labelled loop configuration. Therefore, the number of labelled loop
configurations we obtain from (`

1

, . . . , `s) is precisely

n!
Qs

i=1

m(`i)
Qt

i=1

ki!
.

We assign to each of these labelled loop configurations the same weight equal to
Qs

i=1

w(`}i ;x), where we use the fact that according to the definition (2.22), w(`}i ;x)
does not depend on the actual labelling. Then the total weight of all labelled loop
configurations associated with (`

1

, . . . , `s) is

n!
Qs

i=1

m(`i)
Qt

i=1

ki!

s
Y

i=1

w(`}i ;x) =
n!

Qt
i=1

ki!

s
Y

i=1

w(`i;x).

We claim that this is exactly n! times the total weight that all the permutations of the
loop configuration (`

1

, . . . , `s) contribute to the sum in Proposition 2.15. Indeed, there
are precisely

s!
Qs

i=1

ki!
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such permutations, and the weight each of them contributes to the sum is

1

s!

s
Y

i=1

w(`i;x).

We conclude that to prove Proposition 2.15, it suffices to show that for given n and r,
the weights of all labelled loop configurations {`}

1

, . . . , `}s } such that
Ps

i=1

n(`i) = n,
Ps

i=1

r(`i) = r and (`
1

, . . . , `s) is not edge-disjoint, sum to 0. Write C}
n,r for this

collection of labelled loop configurations. We will now prove the desired cancellation
of weights, and hence Proposition 2.15, by finding a bijection g : C}

n,r ! C}
n,r which

maps each labelled loop configuration to a labelled loop configuration which has a
weight of the opposite sign, but with the same absolute value.

Proof of Proposition 2.15. Before we go into the formal details of the bijection, let us
give an informal description of how it will work. Consider a labelled loop configuration
{`}

1

, . . . , `}s } 2 C}
n,r, and let E} be the set of edges in G that are assigned more than

one label in this configuration. Find the smallest of all the labels that are assigned to the
edges in E}, let a be this label, and let uv be the edge to which this label is assigned.
Next, find the second smallest label b which is assigned to the edge uv.

The label a labels a step of one of the loops `i. The label b either labels another
step of the same loop `i, or it labels a step of a second loop `j , i 6= j. The bijection
involves interchanging the “connections” on one side of the two steps marked a and b

(either at the vertex u or at the vertex v), as illustrated in Figure 2.5. It is clear that this
operation does not change the absolute value of the weight of the configuration, since
the total number of steps that go through a given edge does not change. But Figure 2.5
also suggests that the operation corresponds to increasing or decreasing the number of
“crossings” in the configuration by 1, which should indeed lead to a change in sign.

However, signs were formally defined in terms of winding angles, not numbers of
crossings, since it is more difficult to make sense of the latter when loops are not edge-
disjoint. Furthermore, we must still formally define the mapping g. We will now deal
with these technical issues.

For the formal treatment of the bijection, we need to introduce some additional
notation. Given a sequence a = (a

0

, . . . , an) of arbitrary elements, we write a�1 for
its reversion a�1

= (an, an�1

, . . . , a
0

). If b = (b
0

, . . . , bm) is another sequence of
arbitrary elements, we write a� b for the concatenation of a with b, that is,

a� b = (a
0

, . . . , an, b0, . . . , bm).

The weight of a labelled loop configuration {`}
1

, . . . , `}s } is defined as the product
of the signs of the loops `

1

, . . . , `s, times the product of all the edge weights picked
up by all the loops. As was anticipated above, the product of edge weights will not
change under the bijection, so we will only be concerned with the product of the signs
of the loops. We recall from (2.5) and (2.6) that the sign of a loop ` = (v

0

, . . . , vn�1

)
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a b
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Figure 2.5: All cases that occur in the cancellation of labelled loop diagrams, as ex-
plained in the text. The curves !

1

and !
2

represent arbitrary walks connected to the
vertices u and v.

is defined in terms of its winding angle as

sgn(`) = � exp

⇣ i

2

↵(`)
⌘

, (2.23)

where the winding angle ↵(`) is given by

↵(`) =

n�1

X

i=0

\(vi+1

� vi, vi+2

� vi+1

). (2.24)

We now define the winding angle and sign of a closed walk (v
0

, . . . , vn�1

) by the
exact same formulas. In particular, all rotations (i.e. circular shifts) of a loop ` have
the same winding angle and sign. On the other hand, the reversion `�1 of ` and all
its rotations are traversed in the opposite direction, and therefore they all have winding
angle ↵(`�1

) = �↵(`). However, since the winding angle of a loop is a multiple of 2⇡,
we do have that

sgn(`�1

) = sgn(`) for all closed walks `. (2.25)

We call all the rotations of a loop `, and all rotations of its reversion `�1, alternative
representations of `. All these representations have the same sign. Likewise, the ro-
tations of a labelled loop `} and its reversion (`})�1 will be called representations of
this labelled loop.

We also need to define the winding angle for walks in G which are not loops. Note
that a walk ! = (v

0

, . . . , vn�1

) is not a loop if v
0

vn�1

/2 E, v
0

= vn�2

, or v
1

= vn�1

.
If we follow such a walk from v

0

to vn�1

, we turn through n�2 angles, and it is natural
to define the winding angle of ! by

↵(!) =

n�3

X

i=0

\(vi+1

� vi, vi+2

� vi+1

).
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We now have all the notation we need to define and analyse the bijection formally.
So consider a labelled loop configuration {`}

1

, . . . , `}s } 2 C}
n,r, and define E}, a, b and

uv as above. We will now explain to which labelled loop configuration our configura-
tion {`}

1

, . . . , `}s } is mapped by the bijection, and prove that the image has the opposite
sign, and hence the opposite weight. There are three possible cases to consider, which
are illustrated in Figure 2.5.

Case 1: The labels a and b belong to different labelled loops. Let `}i be the labelled
loop containing label a, and let `}j be the labelled loop containing label b. Then these
labelled loops have representations of the form ˆ`}i = (u, a, v)�!}

1

and ˆ`}j = (u, b, v)�
!}
2

, respectively, where !}
1

and !}
2

are walks interspersed with labels. We can now
form the combined representation

ˆ`}ij = (u, a, v)� !}
1

� (u, b, v)� !}
2

of a new labelled loop `}ij . Our bijection maps {`}
1

, . . . , `}s } to the labelled loop con-
figuration

{`}
1

, . . . , `}s , `
}
ij} \ {`}i , `}j }.

To see that this labelled loop configuration has the opposite sign compared to the sign
of its pre-image {`}

1

, . . . , `}s }, note that by (2.23)–(2.25),

sgn(`i) sgn(`j) = sgn(

ˆ`i) sgn(ˆ`j) = exp

⇣ i

2

↵(ˆ`i) +
i

2

↵(ˆ`j)
⌘

= exp

⇣ i

2

↵(ˆ`ij)
⌘

= � sgn(

ˆ`ij) = � sgn(`ij).

Case 2: The labels a and b are on steps of the same labelled loop taken in the same
direction. This case is the reverse of Case 1. The labels a and b are in a labelled loop `}i
which has a representation of the form

ˆ`}i = (u, a, v)� !}
1

� (u, b, v)� !}
2

.

From this we obtain the representations (u, a, v) � !}
1

and (u, b, v) � !}
2

of two new
labelled loops `}i1 and `}i2. The bijection maps {`}

1

, . . . , `}s } to the labelled loop con-
figuration

{`}
1

, . . . , `}s , `
}
i1, `

}
i2} \ {`}i }.

The same argument as in Case 1 shows that sgn(`i1) sgn(`i2) = � sgn(`i).
Case 3: The labels a and b are on steps of the same labelled loop taken in oppo-

site directions. In this case the labels a and b are in a labelled loop `}i which has a
representation of the form

ˆ`}i = (u, a, v)� !}
1

� (v, b, u)� !}
2

.

From this we can construct the representation

ˆ`} = (u, a, v)� (!}
1

)

�1 � (v, b, u)� !}
2
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of a new labelled loop `}. The bijection maps {`}
1

, . . . , `}s } to the labelled loop con-
figuration

{`}
1

, . . . , `}s , `
}} \ {`}i }.

To verify that these loop configurations have opposite signs, observe that

↵(ˆ`i) = ↵
�

(u, v)� !
1

� (v, u)
�

+ ↵
�

(v, u)� !
2

� (u, v)
�

, (2.26)

and likewise

↵(ˆ`) = ↵
�

(u, v)� !�1

1

� (v, u)
�

+ ↵
�

(v, u)� !
2

� (u, v)
�

, (2.27)

where !
1

and !
2

are the walks obtained from !}
1

and !}
2

by dropping the labels. Now
notice that upon reversion,

↵
�

(u, v)� !
1

� (v, u)
�

= �↵
�

(u, v)� !�1

1

� (v, u)
�

. (2.28)

Furthermore, it is not difficult to see that

↵
�

(u, v)� !
1

� (v, u)
�

= 2m⇡ + ⇡ for some m 2 Z.

Together with (2.26), (2.27) and (2.28), this implies

sgn(`i)

sgn(`)
=

sgn(

ˆ`i)

sgn(

ˆ`)
= exp

⇣ i

2

↵(ˆ`i)� i

2

↵(ˆ`)
⌘

= �1.

We conclude that in all three cases, the labelled loop configuration {`}
1

, . . . , `}s } is
mapped to a labelled loop configuration of opposite weight. From the explicit descrip-
tions given above, it is not difficult to see that the mapping is bijective. As we have
explained above, this implies Proposition 2.15.

2.3 Bound on the operator norm
of the transition matrix

In this section, we will prove Theorem 2.11. To this end, let G = (V,E) be a fixed finite
rectangle in Z2 with no additional edges (i.e. EA = ;). Without loss of generality, we
may assume that the vertex set is

V = {0, 1, . . . ,M � 1}⇥ {0, 1, . . . , N � 1}. (2.29)

Since we are on the square lattice, directed edges can point in only 4 directions, and we
now introduce some convenient notation for this specific case. We write v⇥, v⇤, v� and
v� for the directed edges from v to, respectively, v + (0, 1), v � (0, 1), v + (1, 0) and
v � (1, 0). We also write ⇥v for the directed edge pointing from v � (0, 1) to v, and
define ⇤v, �v, �v analogously.
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Given a vector of edge weights x = (xe)e2E , ⇤(x) is the transition matrix indexed
by the directed edges of G, defined by (2.13). For a vertex v not on the boundary
of G, the row of ⇤(x) indexed by �v, for instance, has exactly 3 nonzero entries, cor-
responding to the 3 possible steps that a loop can take from �v. To be precise, with
u = v � (1, 0), these 3 entries are

⇤�v,v�(x) = xuv, ⇤�v,v⇥(x) = xuve
i⇡/4, ⇤�v,v⇤(x) = xuve

�i⇡/4.

Observe that most rows of ⇤(x) have exactly 3 nonzero entries. The only exceptions
are the rows indexed by directed edges pointing to a vertex in @G. These exceptional
rows make it impossible to compute the eigenvalues of ⇤(x) directly. We will therefore
make the graph periodic by connecting opposite sides, as described in Section 2.1.3, so
that all vertices can be treated alike, and then bound the eigenvalues of ⇤(x) in terms
of those of the periodic graph (or equivalently, a graph wrapped on a torus).

To be precise, we first extend our graph G to a graph G}, by adding edges and
vertices as shown in Figure 2.2 (left). Note that this adds directed representative edges
v� and �v for every vertex v on the right boundary of G, and v⇥ and ⇤v for v on
the top boundary. All other edges that are added are considered as additional edges
in the graph G}. Henceforth, when we work on the graph G}, computations will be
performed modulo M and N in the two respective lattice directions.

We define ⇤

} as the transition matrix for the graph G}, with specific edge weights
chosen as follows: all representative edges of G} have edge weight 1; for the additional
edges, we choose the edge weights in such a way, that the product of the edge weights
along every chain of additional edges linking opposite sides of the rectangle to each
other is �1. Note that by this choice, the factor �1 will exactly compensate the sign
picked up by a walk which follows the chain, because of the 4 quarter-turns it makes.

Proof of Theorem 2.11. We first prove that the operator norm of the matrix ⇤

} equalsp
2 + 1. To this end, assume that the rows of ⇤} are arranged in such a way, that for

every vertex v 2 V , the 4 rows indexed by �v, ⇥v, �v and ⇤v immediately succeed
each other in this order. Let ⇧ be the permutation matrix which permutes the columns
of ⇤} so that column vd maps to column dv, for all v 2 V and d 2 {⇥, ⇤,�,�}.

By construction, the matrix ⇤

}
⇧ with the permuted columns is a block-diagonal

matrix, since the 4 rows indexed by the directed edges pointing to v are matched along
the diagonal with the 4 columns indexed by the directed edges pointing out from v. By
considering the turning angles, it is easy to see that each 4 ⇥ 4 block is equal to the
Hermitian matrix

A =

2

6

6

4

1 exp(i⇡/4) 0 exp(�i⇡/4)

exp(�i⇡/4) 1 exp(i⇡/4) 0

0 exp(�i⇡/4) 1 exp(i⇡/4)

exp(i⇡/4) 0 exp(�i⇡/4) 1

3

7

7

5

,

which has eigenvalues
p
2 + 1 and

p
2� 1, both of multiplicity 2.
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Since A is Hermitian, its spectral radius is equal to its operator norm kAk. It follows
that the operator norm of ⇤}

⇧ is given by kAk =

p
2+1, and since permuting columns

does not change the operator norm of a matrix, we conclude that k⇤}k =

p
2 + 1.

We will now use this fact, together with the sub-multiplicativity of the operator
norm, to bound k⇤(x)k. To this end, let D(x) be the diagonal matrix of the same
dimensions as ⇤

}, defined as follows. For vertices v on the right boundary of G, the
diagonal entries of D(x) on the rows v� and �v are 0, and so are the diagonal entries
on the rows v⇥ and ⇤v for v on the top boundary of G. For all other directed edges �!uv
in the graph G}, the diagonal entry of D(x) on row �!uv is equal to the edge weight xuv .

Now consider the matrix D(x)⇤}D(1), where 1 denotes the edge weight vector
on G} with constant weight 1 on every edge. The multiplication by D(x) multiplies
all rows of ⇤} corresponding to directed edges �!uv in the graph G by xuv , and zeroes
out all rows corresponding to directed edges which are in the graph G}, but not in the
graph G. The multiplication by D(1) then zeroes out all columns of ⇤} corresponding
to directed edges which are in G} but not in G. In other words, D(x)⇤}D(1) is just the
matrix ⇤(x) with rows and columns of zeros added to it for every directed edge which
is in G} but not in G. Therefore,

k⇤(x)k = kD(x)⇤}D(1)k  kD(x)k · k⇤}k · kD(1)k = (

p
2 + 1)kxk1.

The desired bound on |fr(x)| now follows from (2.21) and the facts that ⇢(x)  k⇤(x)k
and the number of directed edges in G is bounded by 4|V |.

2.4 Proofs of the results for the Ising model
In the next sections, we will apply Theorem 2.10 to the Ising model on the square lat-
tice Z2. This will lead to explicit expressions for the free energy density and two-point
functions in terms of sums over loops in Z2 or its dual Z2⇤, valid all the way up to the
critical point. We start with a brief review of the low- and high-temperature expansions
in Section 2.4.1. Then, we will study the free energy density in Section 2.4.2, and fi-
nally the two-point functions at low and high temperatures in Sections 2.4.3 and 2.4.4,
respectively.

2.4.1 Low- and high-temperature expansions
of the partition function

The partition function of the Ising model is closely related to the graph generating
function Z(x) from Section 2.1.4. This can be seen from the low- and high-temperature
expansions considered in this section. More details on these expansions and the related
duality of the Ising model can be found in [52, Section II.7].

Let G = (V,E) be a finite rectangle in Z2. By G⇤
= (V ⇤, E⇤

) we shall denote
the weak dual graph of G, i.e. the rectangle in Z2⇤ whose vertices are the centres of the
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Figure 2.6: The graph G and its weak dual G⇤, with an even subgraph of G⇤ marked by
bold edges. The spins in the gray squares have value �1, the rest have value +1.

bounded faces of G (see Figure 2.6, left). For our purposes, the low-temperature ex-
pansion is best considered in the case of positive boundary conditions. It is not difficult
to see that in this case, there is a 1–1 correspondence between the even subgraphs of
the weak dual G⇤ and the spin configurations in ⌦

+: given � 2 ⌦

+, one obtains the
corresponding even subset F (�) of E⇤ by including the edge dual to uv in F (�) if and
only if �u 6= �v , for every uv 2 E. See Figure 2.6 for an illustration.

Note that by this correspondence, if F ⇢ E⇤ is even, then every edge in F separates
two spins that have opposite sign. This means that adding an edge uv to F decreases
�u�v from +1 to �1, and hence has a “cost” exp(�2�) in the probability distribu-
tion (2.1). It follows that we can write

P+

G,�(�) =
exp(�|E|)

Z+

G,�

Y

e2F (�)

xe, � 2 ⌦

+

G , (2.30)

where xe = exp(�2�) for every e 2 E⇤, and

Z+

G,� = exp(�|E|)
X

even F⇢E⇤

Y

e2F

xe. (2.31)

This is the low-temperature expansion of the partition function for positive bound-
ary conditions. Observe that up to the factor exp(�|E|), this expansion takes exactly
the form (2.10) of the graph generating function Z(x) for the weak dual graph G⇤ (in
which no edges cross each other), if we set the edge weights of all dual edges e 2 E⇤

equal to xe = exp(�2�).
We now turn to the high-temperature expansion, for which we impose free boundary

conditions. The expansion will be over even subgraphs of the graph G, rather than of
the weak dual G⇤. Unlike in the low-temperature expansion, these subgraphs do not
have a clear geometric interpretation in terms of the spin configurations.

The high-temperature expansion starts from equation (2.2) and the observation that
�u�v can only take the values �1 or +1. Since exp(±�) = cosh� ± sinh�, we see
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that
Z free

G,� = (cosh�)|E|
X

�2⌦

free
G

Y

uv2E

�

1 + �u�v tanh�
�

.

The next step is to expand the product over uv 2 E. Each term in the expansion
will be a product of factors obtained by choosing for each edge uv whether 1 is taken
as a factor, or �u�v tanh�, so that the expansion becomes a sum over all choices of
factors for each edge uv. We can represent each choice graphically by removing the
edge uv if we choose the factor 1 for this edge, and keeping uv if we choose the factor
�u�v tanh�. This gives a 1–1 correspondence between all terms in the expansion, and
all F ⇢ E (not just the even ones). Using this correspondence, and then interchanging
the order of summation over � and F , we may now write the partition function as

Z free
G,� = (cosh�)|E|

X

F⇢E

X

�2⌦

free
G

Y

u2V

�deg(u,F )

u

Y

uv2F

xuv, (2.32)

where xuv = tanh� for all uv 2 E and deg(u, F ) denotes the degree of u in the graph
(V, F ). Note that the sum over � vanishes unless deg(u, F ) is even for all u 2 V , in
which case the sum yields simply 2

|V |. Therefore,

Z free
G,� = 2

|V |
(cosh�)|E|

X

even F⇢E

Y

uv2F

xuv. (2.33)

Again, up to a multiplicative constant, the expansion takes exactly the form (2.10) of
the graph generating function Z(x), this time for the graph G, if we set the edge weights
equal to xuv = tanh�.

For future reference, note that the above expansions did not rely on the fact that
the graphs are rectangles in the plane. Indeed, the low-temperature expansion can be
performed for all planar graphs and the high-temperature expansion works for arbitrary
graphs.

2.4.2 Free energy density
We are now going to use the bound obtained in Theorem 2.11 to prove Theorem 2.3
and it’s Corollary 2.4.

Proof of Theorem 2.3. We start with the high-temperature case, so fix � 2 (0,�c) and
set x = tanh�. Let G be a rectangle in Z2, and take the set of additional edges to be
empty. Note that by (2.4), x 2 (0,

p
2� 1). By (2.33),

lnZ free
G,� = |V | ln 2 + |E| ln(cosh�) + lnZG(x), (2.34)

where ZG(x) is the generating function for the graph G with edge weights equal to x.
By Theorems 2.10 and 2.11, lnZG(x) equals

P

r fG,r(x), where fG,r(x) denotes the
sum of the weights of all loops of length r in G.
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Consider these loops of length r in G. For each vertex v 2 V , let Lv
r(G) denote

the collection of loops in G of length r for which v is the smallest vertex in the lex-
icographic order on Z2 that the loop visits. Observe that if v is at distance at least r
to the boundary of G, then Lv

r(G) can be mapped bijectively to L�
r(Z

2

) by a trans-
lation on Z2, hence

P

`2Lv
r(G)

w(`;x) = f�
r (x). There are at most |@G|r vertices

at a distance less than r from @G, and since |x| < 1, for such a vertex v we have
P

`2Lv
r(G)

|w(`;x)|  3

r (by counting non-backtracking walks). From these observa-
tions and the fact that limG!Z2 |@G|/|V | = 0, it follows that

lim

G!Z2

1

|V |fG,r(x) = lim

G!Z2

1

|V |
X

v2V

X

`2Lv
r(G)

w(`;x) = f�
r (x) for all r � 1.

Furthermore, Theorem 2.11 says that |fG,r(x)|  2|V |r�1

(

p
2 + 1)

rxr. Therefore, by
dominated convergence and Theorem 2.10,

lim

G!Z2

1

|V | lnZG(x) = lim

G!Z2

1
X

r=1

1

|V |fG,r(x) =
1
X

r=1

f�
r (x).

We now combine this with (2.34), and use limG!Z2 |E|/|V | = 2 to obtain

��f(�) = lim

G!Z2

1

|V | lnZ
free
G,� = ln(2 cosh

2 �) +

1
X

r=1

f�
r (x).

The low-temperature case can be treated in a similar manner, except that one must
work on the dual graphs G⇤ with edge weights x = exp(�2�) on the dual edges, and
use (2.31) instead of (2.33).

Proof of Corollary 2.4. We will now show that Onsager’s formula follows from the
expressions for f(�) derived above. First, we claim that with x = tanh� for � 2
(0,�c) and x = exp(�2�) for � 2 (�c,1), we have

��f(�) = ln



2 cosh 2�

1 + x2

�

+

1
X

r=1

f�
r (x) (2.35)

for all these �. This follows from (2.8) and the equality cosh

2 �+sinh

2 � = cosh

2 �(1+

x2

) = cosh 2� for � 2 (0,�c), and from (2.8) together with the logarithm of the equal-
ity 2 cosh 2� = e2�(1 + x2

) for � 2 (�c,1).
In the proof of Theorem 2.3, we obtained

P

r f
�
r (x) as the limit of |V |�1

P

r fG,r(x).
It is clear from the proof that here we may as well replace fG,r(x) by the corresponding
sum of loop weights for the periodic graph G} from Section 2.3. In fact, the argu-
ment becomes even simpler on G}, since we no longer have to treat vertices near the
boundary separately. The transition matrix generating the loops in G} with the desired
edge weights x is x⇤}. Hence, by Theorem 2.10 and the proof of Theorem 2.11 in
Section 2.3, which gives kx⇤}k  x(

p
2 + 1), we see that for x 2 (0,

p
2� 1),

1
X

r=1

f�
r (x) = lim

G!Z2

1

|V |
1
X

r=1

fG},r(x) = lim

G!Z2

1

|V |
1

2

ln det(I� x⇤}
). (2.36)
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We can compute det(I � x⇤}
) by taking the Fourier transform of ⇤}. This com-

putation has appeared in the literature before, see for instance [27, 50, 55], but we also
present it in brief form here for completeness.

Without loss of generality, we may assume that V is the set (2.29), in which case
the Fourier transform of ⇤} is defined as

e

⇤

}
(p,q)d,(p0,q0)d0 =

1

MN

M�1

X

k,k0
=0

N�1

X

l,l0=0

e�
2⇡i
M (pk�p0k0

)� 2⇡i
N (ql�q0l0)

⇤

}
(k,l)d,(k0,l0)d0 ,

where d, d0 2 {⇥, ⇤,�,�}. The calculation of this Fourier transform is made straight-
forward by the periodicity of ⇤}, and reveals that the only entries surviving the sum-
mations are those for which p0 = p and q0 = q. Hence, e⇤} is a block-diagonal matrix
of 4⇥ 4 blocks. To be precise, writing !p = 2⇡p/M , !q = 2⇡q/N , the 4⇥ 4 block for
given p and q is

e

⇤

}
(p,q)·,(p,q)· =

2

6

6

4

ei!p ei!p+i⇡/4
0 ei!p�i⇡/4

ei!q�i⇡/4 ei!q ei!q+i⇡/4
0

0 e�i!p�i⇡/4 e�i!p e�i!p+i⇡/4

e�i!q+i⇡/4
0 e�i!q�i⇡/4 e�i!q

3

7

7

5

.

Since det(I� x⇤}
) = det(I� xe⇤}

), from this Fourier transform we obtain

det(I� x⇤}
) =

M�1

Y

p=0

N�1

Y

q=0

det

⇣

I� xe⇤}
(p,q)·,(p,q)·

⌘

=

M�1

Y

p=0

N�1

Y

q=0

⇥

(1 + x2

)

2 � 2x(1� x2

)(cos!p + cos!q)
⇤

.

Using (2.36), we conclude that

1
X

r=1

f�
r (x) = lim

M,N!1

1

2MN
ln det(I� x⇤}

)

=

1

8⇡2

Z

2⇡

0

Z

2⇡

0

ln

⇥

(1 + x2

)

2 � 2x(1� x2

)(cos!
1

+ cos!
2

)

⇤

d!
1

d!
2

. (2.37)

To finish the computation, note that by (2.35), we have

��f(�) =
1

8⇡2

Z

2⇡

0

Z

2⇡

0

ln



4 cosh

2

2�

(1 + x2

)

2

�

d!
1

d!
2

+

1
X

r=1

f�
r (x).

Combining this with (2.37), and then using the identity

2x(1� x2

)

(1 + x2

)

2

=

sinh 2�

cosh

2

2�
,
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which holds both for x = exp(�2�) and for x = tanh�, we obtain

��f(�) =
1

8⇡2

Z

2⇡

0

Z

2⇡

0

ln

⇥

4 cosh

2

2� � 4 sinh 2�(cos!
1

+ cos!
2

)

⇤

d!
1

d!
2

.

This is Onsager’s formula for the isotropic Ising model on Z2.

2.4.3 Low-temperature two-point functions

In this section, we discuss the Ising model with positive boundary conditions. We con-
sider rectangles G = (V,E) in Z2 (which later tend to Z2) and denote by G⇤ the weak
dual of G. Recall that every spin configuration � 2 ⌦

+

G on G corresponds bijectively to
an even subgraph of G⇤, that is, a graph in which all vertices in V ⇤ have even degree.
For given �, we denote the corresponding even subset of E⇤ by F (�); for given even
F ⇢ E⇤, we denote the corresponding spin configuration by �(F ).

Setting xe = e�2� for every edge e in Z2⇤, by (2.30) and (2.31) we have

P+

G,�(�) =
1

ZG⇤
(x)

Y

e2F (�)

xe, � 2 ⌦

+

G , (2.38)

where ZG⇤
(x) is the generating function for G⇤ with edge weight vector x = (xe)e2E⇤ .

Note that here we implicitly restrict the edge weight vector x on Z2⇤ to the edges of
the graph G⇤ we work on. Such implicit restrictions to the relevant edges will occur
throughout this and the following sections.

Proof of Theorem 2.5. Fix u, v 2 Z2, u 6= v, and let � be a self-avoiding walk in Z2

from u to v. We may assume that G is large enough so that u, v and � are all con-
tained in the area spanned by G, see Figure 2.1. We will express the two-point function
h�u�vi+G,� as the quotient of two generating functions. To this end, we define new edge
weights x0

e on the edges of Z2⇤ such that x0
e = �xe if e crosses �, and x0

e = xe other-
wise. The reason for defining the weights x0

e in this way is the crucial fact that for all
� 2 ⌦

+

G ,

�u�v

Y

e2F (�)

xe =

Y

e2F (�)

x0
e. (2.39)

To see this, recall that the edges in F (�), by their very definition, cross edges xy 2 E

for which �x 6= �y . If �u = �v , then following � from u to v, we necessarily cross an
even number of such edges. If �u 6= �v , then we cross an odd number. In either case,
(2.39) holds.

With the help of (2.38), we can write

h�u�vi+G,� =

X

�2⌦

+
G

�u�vP
+

G,�(�) =
1

ZG⇤
(x)

X

�2⌦

+
G

�u�v

Y

e2F (�)

xe,
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and using (2.39) and the bijection between even F and ⌦

+

G , we obtain

h�u�vi+G,� =

1

ZG⇤
(x)

X

even F⇢E⇤

Y

e2F

x0
e =

ZG⇤
(x0

)

ZG⇤
(x)

. (2.40)

The idea that correlations in the Ising model can be studied by means of ratios of gener-
ating functions with changed edge weights (or equivalently, changed spin-spin interac-
tions) has arisen before in the physics literature, see [37]. It now follows from Theorems
2.10 and 2.11 that for � > �c, we have

h�u�vi+G,� = exp

✓ 1
X

r=1

X

`2Lr(G⇤
)

⇥

w(`;x0
)� w(`;x)

⇤

◆

,

where Lr(G⇤
) is the collection of loops of length r in the graph G⇤.

Recall that we call a loop in G⇤ uv-odd if it crosses � an odd number of times.
Observe that for uv-odd loops `, w(`;x0

) = �w(`;x), while for loops ` that are not
uv-odd, w(`;x0

) = w(`;x). It follows that

h�u�vi+G,� = exp

✓

�2

1
X

r=1

X

`2Luv
r (G⇤

)

w(`;x)

◆

, (2.41)

where Luv
r (G⇤

) is the collection of uv-odd loops of length r in the graph G⇤.
Note that a uv-odd loop of length r cannot travel far from u and v. To be precise,

these loops must be contained in Bu
r [ Bv

r , where Bu
r is a square in the plane of side

length r centred at u, and Bv
r is defined similarly. To study the convergence of (2.41)

as G ! Z2, for arbitrary rectangles G in Z2 that can be finite or infinite, and even equal
to Z2, we now define

ar(G⇤
;x) :=

X

`2Luv
r (G⇤

)

w(`;x).

This definition makes sense both for finite and infinite G, since the loops contributing
to the sum must be contained in Bu

r [Bv
r .

Let Buv
r denote the smallest rectangle in R2 containing both Bu

r and Bv
r , and write

G⇤ \Buv
r for the largest subgraph of G⇤ which is a rectangle in Z2⇤ entirely contained

in Buv
r . Then for all G,

ar(G⇤
;x) = ar(G⇤ \Buv

r ;x) =
1

2

X

`2Lr(G⇤\Buv
r )

⇥

w(`;x)� w(`;x0
)

⇤

. (2.42)

Now, since the volume of Buv
r is bounded from above by (ku� vk+r)2, and exp(2�c) =p

2 + 1 by (2.4), Theorem 2.11 yields the uniform bound

|ar(G⇤
;x)|  2(ku� vk+ r)2r�1

exp

��2(� � �c)r
�

for all G. (2.43)

We now return to (2.41). Since eventually, G⇤ \Buv
r = Z2⇤ \Buv

r when G ! Z2,
from (2.42) we conclude that

ar(G⇤
;x) ! ar

�

Z2⇤
;x
�

for all r � 1.
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Moreover, the ar(G⇤
;x) are uniformly bounded in G by the right-hand side of (2.43),

which is summable over r. Therefore, by dominated convergence,

lim

G!Z2

1
X

r=1

ar(G⇤
;x) =

1
X

r=1

ar
�

Z2⇤
;x
�

,

where the series on the right is absolutely summable. Using (2.41), this proves the
convergence of h�u�vi+G,� in Theorem 2.5.

Next, we consider h�ui+G,� for u 2 G \ @G. We can treat this like h�u�vi+G,� by
taking v on the boundary of G, since then �v = +1. We now call a loop which crosses �
an odd number of times u-odd, since this depends only on u, not v. The box Buv

r can
be replaced by Bu

r in the argument, which replaces (ku� vk+r)2 by r2 in (2.43). This
completes the proof of Theorem 2.5.

Proof of Corollary 2.6. The limit h�ui+Z2,� in Theorem 2.5 is easily seen to be indepen-
dent of the choice of u, and we take u = o as the canonical choice. We now consider
what happens to the two-point function when we take u and v further and further apart.
When r < ku� vk/2, the boxes Bu

r and Bv
r in the proof of Theorem 2.5 above are

disjoint. If this is the case, a uv-odd loop of length r in Z2⇤ must be contained in either
Bu

r or Bv
r . Hence,

h�u�vi+Z2,� = exp

✓

�2

X

r�ku�vk/2

ar
�

Z2⇤
;x
�

◆

⇥ exp

✓

�2

X

r<ku�vk/2

⇥

ar(Z
2⇤ \Bu

r ;x) + ar
�

Z2⇤ \Bv
r ;x
�⇤

◆

.

When ku� vk ! 1, the first factor converges to 1 exponentially fast, since the uni-
form bound in (2.43) applies to ar

�

Z2⇤
;x
�

. In the second factor, the first term in the
sum is a sum over the u-odd loops of length r, and the second term is a sum over the
v-odd loops. Hence the second factor factorizes and converges (exponentially fast) to
[h�oi+Z2,� ]

2.

2.4.4 High-temperature two-point functions

In this section, we discuss the Ising model on rectangles G = (V,E) in Z2 (which
will again tend to Z2) with free boundary conditions. From the definitions (2.1), (2.2)
and (2.3), we have

h�u�vifree
G,� =

X

�2⌦

free
G

�u�vP
free
G,�(�) =

1

Z free
G,�

X

�2⌦

free
G

�u�v

Y

wz2E

e��w�z .
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Performing the high-temperature expansion on the right-hand side of this expression, in
the way explained in Section 2.4.1, leads to

h�u�vifree
G,� =

2

|V |
(cosh�)|E|

Z free
G,�

X

F⇢E
�F={u,v}

Y

e2F

xe,

where xe = tanh� for every edge e in Z2, and �F denotes the set of all vertices that
have odd degree in (V, F ). Using (2.33), we conclude that

h�u�vifree
G,� =

1

ZG(x)

X

F⇢E
�F={u,v}

Y

e2F

xe, (2.44)

where ZG(x) is the graph generating function for the graph G with edge weight vector
x = (xe)e2E .

Proof of Theorem 2.7. Fix u, v 2 Z2, u 6= v, and recall the definitions of u⇤, v⇤, the
walk � and the additional edges E� and vertices V� from Section 2.1.2 (see Figure 2.1,
right). For an arbitrary rectangle G in Z2 (either finite or infinite) containing u and v,
we denote by G� the graph obtained from G by adding all vertices in V� to its vertex
set, and all edges in E� to its edge set. In G� , all edges added from the set E� are
considered as additional, and the edges from G are considered as representative.

As in the low-temperature case, we now define weights x0
e on the edge set of Z2

such that x0
e = �xe if e crosses �, and x0

e = xe otherwise. We also define edge weights
x0
�(t) on the edge set of Z2

� , as follows:

x0
�(t)e =

8

>

>

<

>

>

:

x0
e if e is an edge of Z2

;

1 if e 2 E� \ {uu⇤};
t if e = uu⇤.

(2.45)

To motivate this definition, consider a given rectangle G = (V,E) in Z2, large enough
so that u, v 2 V . We claim that

X

F⇢E
�F={u,v}

Y

e2F

xe =

X

E�⇢F⇢E[E�

F even

(�1)

CF

Y

e2F

x0
�(1)e. (2.46)

To see this, note that we can bijectively map every F contributing to the first sum to a
subgraph in the second sum, by taking the union F[E� . Doing this may introduce edge
crossings, whence the factor (�1)

CF , but these are compensated by switching from the
edge weight vector x to x0

�(1).
The crucial step is now to recognize the last expression as the derivative of a graph

generating function. Indeed, a simple consideration shows that
X

E�⇢F⇢E[E�

F even

(�1)

C(F )

Y

e2F

x0
�(1)e =

@

@t

✓

X

even F⇢E[E�

(�1)

C(F )

Y

e2F

x0
�(t)e

◆

,
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evaluated at any t, since any even F ⇢ E� contributes at most one factor t to the product
of edge weights on the right. In particular, we are allowed to evaluate the derivative at
t = 0. By (2.44) and (2.46), this establishes that

ZG(x) · h�u�vifree
G,� =

@

@t
ZG�

�

x0
�(t)

�

�

�

�

t=0

. (2.47)

We now fix � 2 (0,�c), so that by (2.4), xe 2 (0,
p
2� 1) for every e 2 E, and by

Theorem 2.11, the spectral radius of ⇤(x0
) is strictly less than 1. We now need a similar

bound on the spectral radius of the matrix ⇤�

�

x0
�(t)

�

, which is the transition matrix for
the modified graph G� with edge weight vector x0

�(t). The difference between these
two matrices is that ⇤�

�

x0
�(t)

�

allows transitions between u and v along the chain of
additional edges in E� . This means that the 32 matrix entries from du to vd0 and from
dv to ud0, with d, d0 2 {⇥, ⇤,�,�}, are nonzero in ⇤�

�

x0
�(t)

�

for t 6= 0, while they
are 0 in ⇤(x0

); all other entries of the two matrices are the same.
The 32 deviating matrix entries are all of the form tei�/2, where � is a sum of

turning angles. Here, t will be treated as a complex variable. For t = 0, ⇤�

�

x0
�(t)

�

=

⇤(x0
). Since the eigenvalues vary continuously with t, we conclude that there exists

" > 0 such that for all t satisfying |t| < ", the spectral radius of ⇤�

�

x0
�(t)

�

is bounded
from above by some ↵ 2 (0, 1).

Hence, if |t| < ", Theorem 2.10 applies, and we obtain

ZG�

�

x0
�(t)

�

= exp

✓ 1
X

r=1

f�r(t)

◆

,

where
f�r(t) =

X

`2Lr(G�)

w
�

`;x0
�(t)

�

.

Note that, this last sum being finite, the f�r(t) are polynomials in t. Also, from (2.21) it
follows that |f�r(t)|  2|V |↵r. Therefore, the partial sums of the series

P

r f�r(t) are
uniformly convergent for |t| < ", and the sum of the series is an analytic function of t.
Moreover, the derivatives of the partial sums also converge uniformly to the derivative
of the sum of the series.

From all this, it follows that the right-hand side of (2.47) is equal to
 1
X

r=1

@

@t

X

`2Lr(G�)

w
�

`;x0
�(t)

�

�

�

�

t=0

!

exp

 1
X

r=1

X

`2Lr(G�)

w
�

`;x0
�(0)

�

!

.

In the first factor, the only loops that survive the differentiation are those that visit the
edge uu⇤, since only they contribute a factor t to the weight. Taking the derivative at
t = 0, we are only left with those loops that visit the edge uu⇤ exactly once. In the
second factor, because we set t = 0, the only loops that contribute are those that do not
visit uu⇤. This leaves precisely all loops in the graph G. The right-hand side of (2.47)
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therefore becomes
 1
X

r=1

X

`2Luu⇤
r (G�)

w
�

`;x0
�(1)

�

!

exp

 1
X

r=1

X

`2Lr(G)

w(`;x0
)

!

, (2.48)

where Luu⇤

r (G�) is the set of loops of length r in G� that visit uu⇤ once. From this,
applying Theorem 2.10 again to the second factor, we find that

h�u�vifree
G,� =

 1
X

r=1

X

`2Luu⇤
r (G�)

w
�

`;x0
�(1)

�

!

ZG(x
0
)

ZG(x)
. (2.49)

Note the ratio of graph generating functions in (2.49). Recall that we have seen
such a ratio of graph generating functions before in the low-temperature case, namely
in (2.40). Thus, this ratio can be interpreted as a two-point function between the spins
at u⇤ and v⇤ in a dual Ising model with positive boundary conditions at the dual low
temperature �⇤, given by exp(�2�⇤

) = tanh�. Using (2.41), we can express this ratio
in terms of a sum over all u⇤v⇤-odd loops in the graph G, if we like.

Next, we want to consider the limit as G ! Z2. By the argument given in Sec-
tion 2.4.3, we already know that the ratio of graph generating functions in (2.49) con-
verges to h�u⇤�v⇤i+Z2⇤,�⇤ . It remains to consider what happens to the sum over the
loops that visit uu⇤ once. To this end, for a general finite or infinite rectangle G in Z2

containing u and v, we define

ar(G� ;x
0
�) :=

X

`2Luu⇤
r (G�)

w(`;x0
�), (2.50)

where we have simplified the notation by letting x0
� ⌘ x0

�(1).
As in the low-temperature case, the loops that contribute to ar(G� ;x

0
�) must be

confined to the box Buv
r , defined in the same way as before, except possibly for the

steps taken along the additional edges in E� , which are not counted in the length of the
loop, and are allowed to go outside Buv

r . Hence,

ar(G� ;x
0
�) = ar

�

(G \Buv
r )� ;x

0
�

�

, (2.51)

where G \Buv
r is the largest subgraph of G contained in Buv

r , as before. It follows that
ar(G� ;x

0
�) ! ar

�

Z2

� ;x
0
�

�

for all r � 1. As before, we now want to use dominated
convergence to prove that

lim

G!Z2

1
X

r=1

ar(G� ;x
0
�) =

1
X

r=1

ar
�

Z2

� ;x
0
�

�

, (2.52)

and that the right-hand side is absolutely summable. This requires an appropriate uni-
form bound (in G) on the right-hand side of (2.50).

To obtain this bound, by (2.51) it is sufficient to consider an arbitrary finite rectan-
gle G in Z2 containing u and v, and such that G is contained in Buv

r . Note that every
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loop of length r in G� which visits the edge uu⇤ once, has a representation of the form
! � �, where ! is a walk of length r in G from v to u. Here, we use the facts that the
part ! of the loop never visits uu⇤, and that the steps taken along � from u to v do not
contribute towards the length of the loop, since they are along additional edges.

Let ⇤R(x
0
) be the transition matrix for the graph G with edge weights x0

e. Note that
the sum of the weights of all walks ! of length r from v� to ⇥u, for instance, is given
by the entry of the matrix ⇤

r
R(x

0
) in row v� and column ⇥u. To compute the sum of

the weights of the corresponding loops ! � �, we only need to multiply this entry by
the factor ei�/2, where � is the sum of the turning angles encountered in the walk from
⇥u to v� along the edges in E� . From these observations, we can conclude that

ar(G� ;x
0
�)  16 k⇤r

R(x
0
)k

max

,

where k·k
max

denotes the maximum-entry norm, and the factor 16 comes from the fact
that there are 4 directed (representative) edges pointing out from v, and 4 pointing to u.
By Theorem 2.11 and the fact that the maximum-entry norm of a matrix is bounded by
the operator norm, and using that (tanh�c)

�1

=

p
2 + 1 by (2.4), we obtain

ar
�G� ;x

0
�

�  16 k⇤r
R(x

0
)k  16 k⇤R(x

0
)kr  16

⇣

tanh�

tanh�c

⌘r

. (2.53)

We emphasize that this bound holds uniformly for all finite and infinite rectangles G
containing u and v. Hence, (2.52) holds by dominated convergence, and this completes
the proof of Theorem 2.7.

Proof of Corollary 2.8. We now consider what happens to the two-point function stud-
ied above when we let ku� vk tend to infinity. Since the loops that visit uu⇤ necessarily
have length at least ku� vk, we can write

h�u�vifree
Z2,� =

✓

X

r�ku�vk

ar
�

Z2

� ;x
0
�

�

◆

h�u⇤�v⇤i+Z2⇤,�⇤ .

By Theorem 2.5, the two-point function on the right is bounded between 0 and 1. Alter-
natively, at this stage we could also observe that the ratio of graph generating functions
in (2.49) is always between �1 and +1, since the same even subgraphs contribute to
both generating functions, but only in the numerator, some of them come with a nega-
tive sign. Furthermore, the bound in (2.53) holds for ar

�

Z2

� ;x
0
�

�

. This gives the desired
upper bound. That the two-point function is nonnegative follows directly from (2.44).


